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A comparison of the linear scaling theory model and the equation of state of [i] 
is carried out. 

Recently there has been significant interest in the problem of constructing an equation 
of state in the critical region in terms of the physical variables [1-9]. The "pseudospinodal" 
hypothesis advanced in [5] has been extremely fruitful in solving this problem. In particular, 
in [i] this hypothesis was used to construct the scaling function for the heat capacity at 
constant volume: 

[l (x) = A~ (x -b x l) - ~  -k A2 (x -5 xi) - ~  -k B~ (x q- x 1) v-2 ~- B2 (x ~- xi)  v-2. (1) 

Here Ai and Bi are coefficients and x i and x 2 are certain fixed values of the scaling variable. 

The first two terms of (i) are responsible for correctly reproducing the features of 
the heat capacity at constant volume Cv in the critical region. The last terms give the singu- 
lar behavior of the isothermal compressibility. 

Two special cases of (I) also deserve attention: 

[~ (x) = Ai (x @ x 1) -~  @ A~ (x @ x 2) -~  + BI (x @ x l) v-2 , ( 2 )  

[3 (x) = Ai (x § x i) - ~  + B2 (x + x2)v-2. ( 3 ) 

A f o r m  s t r u c t u r a l l y  a n a l o g o u s  t o  ( 3 )  was u s e d  i n  [ 1 0 ] .  

The c o e f f i c i e n t s  A 2 and  B 2 i n  ( 1 )  and  ( 2 )  a r e  r e l a t e d  t o  A l and  B1 [ 1 ] :  

A 2  : - -  A i x i / x ~ ,  B~  = - -  B i x ~ / x  2. ( 4 )  

The a n a l y s i s  o f  [1]  shows t h a t  e a c h  o f  t h e s e  c h o i c e s  f o r  f ( x )  g i v e s  a q u a l i t a t i v e l y  c o r -  
r e c t  description of the singular behavior of the thermodynamic functions in the asymptotic 
neighborhood of the critical point. In other words, the principal terms of the series expan- 
sions of the functions (1)-(3) agree with the corresponding terms of the scaling functions 
in the linear model in the limits x § 0 (critical isotherm), x + ~ (critical isochore), and 
x + -x 0 (the liquid-vapor equilibrium line). The differences between the functions (1)-(3) 
show up in the higher-order terms of the expansions. Strictly speaking, these remarks pertain 
completely only to the neighborhood of the critical isochore (x § ~). In the vicinity of 
the critical isotherm or phase equilibrium line the functions (1)-(3) are practically the 
same and completely correspond to the well-known Griffiths conditions [6]. However, in the 
neighborhood of the critical isochore the situation is different. In the three cases (1)-(3) 
for f(x), the expansion f(x + ~) will have the form [I--3(X) mCIX--e + C2xv-~ + .... where C 1 and 
C 2 are coefficients uniquely related to the Ai and Bi. Thus the differences in the structure 
of f(x) in (1)-(3) do not affect the asymptotic behavior of f(x) in the limit x + ~. From 
this preliminary analysis we can conclude that the singular part of the heat capacity at con- 
stant volume predicted with the help of the functions (1)-(3) is practically identical and 
only certain quantitative differences can appear. 
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If we consider the scaling function for the chemical potential h(x), we obtain (1)-(3) 

in the limit x § ~ [I]: 

h~ (x--+ ~ )  = dt ix  ~ + d~2x - ~  + . . . .  (5) 

G ( x - +  oo) = G~x ~ + G~x v-~ + . . . .  (6) 

h~(x--->- ~ )  = d31x v + da2x 1-~ @ . . . ( 7 )  

We see that the expansions (5)-(7) have different terms following the principal asymptotic 
term. This can significantly affect the characteristics of the equation in reference to the 
thermal properties of the material and, in particular, the isothermal compressibility. The 
present paper considers this question as well. 

Expressions (1)-(3) involve a set of undetermined parameters: Ai, Bi, xl, xi. They 
can be determined by using experimental data, for example on Cv. There is also the possi- 
bility of relating the parameters of (1)-(3) to the critical indices and critical amplitudes 
obtained in the framework of the scaling theory. We show how this is done using the function 
(2) as an example. 

In order to solve this problem we first expand the expression for h(x). The scaling 
theory gives the following relations between the scaling functions of the heat capacity f(x), 
free energya(x), and chemical potential h(x) [7]: 

a" (x) = - -  [ (x), h (x) = (~ + l) a (x) - -  xa'  (x)l~. ( 8 )  

The above r e l a t i o n s  can be used  to  f i n d  h ( x ) ,  i f  we a l s o  use  (2) and (4 ) :  

h ( x ) - -  A t x i  [ ( X @ X i ) I _ =  ~2_(X@X2)I_=] @ B~ ( x + x O V - l ( 2 x + ( 8 +  l )xi)  @ (6 @ 1)Co, (9 
~(i -- ~) ?(7-- 1) 

where 
__ A~x~ B~ (x~ --xo)~ '-1 

Co-- (1- -  ~) (2 --- ~) [(xa-- x ~ 1 7 6  - -  ? ( ? - - 1 ) ( 6 + 1 )  ( (6+l )x~- -2x0) .  (10) 

This choice for the constant C o ensures the equality of the chemical potentials on the phase 
equilibrium curve [h(-x 0) = 0]. 

As indicated above, one of the purposes of the present paper is to study the possibility 
of determining the values of the coefficients A l and B I in (2) and (9) in terms of the scaling 
amplitude a, which is introduced in the linear scaling theory model. The linear model gives 
the following results for the asymptotic neighborhood of the critical point 

ak 
flm(X) ~ 2o;0 2 ?(1--?)(klOI)~/~, hlm(x ) aO(l--OD (klOI) -~. (11) 

The n o t a t i o n  i s  c o n v e n t i o n a l  f o r  t h e  s c a l i n g  t h e o r y .  

In order to relate AI and B x with the critical amplitude, we compare the behavior of 
the functions f(x) and h(x) as given here with the functions fs and hs in the neigh- 
borhood of the critical isochore (x + co). In this case we obtain 

f~2)(x) = A~(1 - - x l / x i )  x-% h(9~(x--,- oo) - -  2B~ xV ? (? --  1) ' (12) 

ak a 
f lm(X-~)-- - -  - - ? ( 1 - - ? ) x  -~, h l m ( x ~  ~ )  = - - x v .  (13) 

2ab ~ k 

Comparing the corresponding expressions, we find 

ak 1 
A,= --?(I-?) , (14) 

2~zb 2 1 - -  x ~/x 2 

a 
B, = ~ - ?  (? - 1). ( 1 5 )  

An important intermediate result is that the number of adjustable parameters of the scal- 
ing functions (2) and (9) is reduced by one and is now equal to three: a, xl, xi. With the 
above relations for the coefficients A l and B I in terms of a we can write for f(x) 
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I ]a [ (x) = 2~b"( lakT(1- ~/~)~) (x~.-a~Xo) - ~ -  ~as (x+o2x~ + --k ~ ( 7 - 1 ) ( x + ~ x ~  (16) 

where x o is the value of x on the phase equilibrium line; ~i = x~/x0, ~2 = X2/xo- 
The undetermined parameters m~ and m2 appear in the above expression for f(x). Their 

values can be found from an analysis of the experimental data (a discussion of this possibil- 
ity is a separate subject). Of equal interest is a method similar to that used above to find 
AI and BI: a comparibility analysis between the linear scaling theory model and the equations 
given here. We consider the functions fs and f(~)(x) on the critical isotherm (x = 0) and 
on the phase equilibrium line (x = -x 0) and require that fs = 0) = f(l~)(x = 0) and 
fs = f(16)(-x0). We then obtain 

[(mi__l)_~ oi (~__ 1)_=]=(1__ o t ) [  =b = (oi__l)v_2+(b~ 1)~] ' 
~ . o2 ( b ~ - -  1)2~ ( 1 7 )  

[ ~F= ~2~t ~ 2 = ] : ( 1 - - ' ~ i ) [ ~ 2  (b 2-~b21) 2~'~T-2+(b~-l)=b-=/~] " 

The values of the parameters ~i and ~2 in (16) can be found from the above system of 
equations. It is extremely important to note that in (17) only the critical indices appear 
(besides ml and ~2). Hence, m~ and ~2 determined in this way will be universal to the same 
extent that the critical indices are universal. This leads to another important conclusion: 
with m~ and m= determined in this way, the number of adjustable parameters of the equation 
of state reduces to one: it is necessary to know only the critical amplitude a. Here the 
potential of the equations of the present paper coincide with that of the linear scaling theory. 

Above we considered the method of determining the constants of the equation of state 
in terms of the parameters of the linear model. In doing this, we analyzed the function f(x) 
in the form (2) in detail. This approach can also be applied in the cases (i) or (3) without 
any serious difficulties. For example, in the case (3) we obtain for f(x) 

[ __ ] f(X) -- 2r 2 ?(1 -- ?) (x-~-~ -~  r 2 (xJ- c%~Xo)V -2 , (18) 

where mll and ~22 are determined from the following system of equations: 

~b 2 
( , , , i l  - -  1 ) - ~ ,  - -  �9 ( , o 2 ~  - -  1 ) v - 2  _ -  ( b  = _ 1 ) %  

(b  = - -  1)2~ 

(b 2 -- 1)21~" (~ 2 ~ (b 2-1)~b-~/f~ 

(19) 

The fundamental conclusion remains in force: the scaling function f(Is)(x) gives the 
principal asymptotic terms of the thermodynamic functions in the critical region and has only 
a single adjustable parameter, the critical amplitude. 

Earlier, from general considerations, it was noted that the choice of f(x) in the forms 
(1)-(3) should affect the results for Cv only weakly but can significantly affect the accuracy 
of the reproduction of KT. Since we have found the final form of the function f(x) in (16) and 
(18) for the cases (2) and (3), respectively, we can examine quantitatively the above asser- 
tion. It is expedient to compare with the linear scaling theory. The parameters of the linear 
model are chosen to be the following [8, 9]: ~ = 0.114, B = 0.339, 7 = 1.208, a = 17.61, 
x 0 = 0.2422. The numerical values are for argon, one of the most widely studied materials. 
This information is sufficient to determine ml and ml [for f(16)(x)], and also ~11 and ~22 
[for f(18)(x)]. Using (17) and (19), respectively, we compute the following values of these 
parameters: ml = 2.33961, m2 = 2.69192, mll = 2.64, ~22 = i0.00. Hence all of the coeffi- 
cients of Eqs. (16) and (18) are determined and we can compare how accurately the scaling 
function for the heat capacity is reproduced by the functions f()16 (x) and f(18)(x). In 
Fig. i the deviation of f(x) calculated by (16) and (18) from fs obtained in the linear 
scaling theory is shown. We see that the deviation 8f = (f(x) - fs163 in both 
cases does not exceed the error in determining f(x) from the experimental data, which is about 
1-3% [8]. However, for f(Is)(x) the deviation from fs is close to this limit, whereas 
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Fig. I. Deviation of the scaling function for the heat ca- 
pacity at constant volume obtained in the present paper from 
f~m(x): curve i) calculated from (18); 2) calculated from 
(16). 

Fig. 2. Dependence of the scaling function of the chemical 
potential on the scaling variable: curve i) h(18)(x); curve 
2) h(16)(x); curve 3) linear scaling theory. 

for f(16)(x) it is significantly less. Hence both (18) and (16) can be used to calculate Cv 
for individual materials in the asymptotic neighborhood of the critical point. The function 
f(18)(x) has limited possibilities as far as the error in cv is concerned, but for f(16)(x) 
there is a significant margin of safety. This fact will be significant in the calculation 
of the other thermodynamic functions. In order to study this question, we compute the func- 
tion h(x) with (16) and (18) and then compare the result with h~m(X) [for the case (16) the 
function h(x) is given by (9); for f(is)(x) it can be obtained easily with the help of (8)]. 
In Fig. 2 we show the results for h(16)(x) and h(18)(x) for a wide range of x. As expected, 
the possibilities of h(is)(x) are much more limited than for h(l~)(x). Although in the re- 
gion of large x (neighborhood of the critical isochore) both approaches are practically equiv- 
alent and lead to the same accuracy as in the linear scaling theory, with decrease of x, 
h(18)(x) differs from the linear model and from h(16)(x). For x < 3, the deviation 6h = 
(h(x) - h~m(x)/h~m(x)'100% for h(18)(x) becomes significant. In addition, for small x, 
h(18)(x) becomes negative, which is unphysical. On the other hand, the function h(16)(x) not 
only gives a qualitatively accurate description of the scaling function of the chemical poten- 
tial, but also is comparable to the linear scaling theory in its quantitative accuracy. 

Hence the approach suggested in [i] can be used to construct a scaling equation in terms 
of physical variables which is comparable in accuracy to the linear scaling theory in the 
calculation of the thermodynamic functions in the neighborhood of the critical point. The 
procedure used here for finding the constants of the equation reduces the number of adjustable 
parameters in the equation of state to one. The scaling equation constructed here has the 
advantage that its scaling functions are directly determined in terms of the physical vari- 
ables such as density and temperature, and not in the parametric form characteristic of the 
linear scaling theory. 

NOTATION 

f(x), h(x), and a(x), scaling functions for the heat capacity at constant volume, chem- 
ical potential, and free energy, respectively; x = ~/IApll/~, scaling variable; �9 = (T - Tc)/ 
Tc, Ap = (p - Pc)/Pc; T, absolute temperature; p, density; Tc, Pc, critical parameters; ~, 
$, ~, and 6, critical indices; a, critical amplitude; Cv, specific heat at constant volume; 
KT, isothermal compressibility; 8, parameter defined by the equation x = (i - b2~2)(klel)-i/B; 
k = [(b 2 - l)/x0]~; b 2 = (~ - 2~)/(i - 2B)/Y; x0, value of the scaling variable on the phase 
equilibrium line. 
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PREDICTION OF THE THERMOPHYSICAL PROPERTIES OF SOLIDS 

L. G. Nikiforov UDC 536.413+536.21+548.536 

Proceeding from the established interrelations between thermophysical, elastic, 
and structural characteristics, the article analyzes the possibility of predict- 
ing the thermophysical properties of solids. 

Prediction of the thermophysical properties of materials (heat capacity, thermal conduc- 
tivity, coefficient of thermal expansion, etc.) is of considerable scientific and practical 
interest. It is known from solid-state physics [i] that 

Here, according to [2], we have: 

Substituting (2) into (i), we have 

= ?Cv/(3~2rNAZ) �9 ( 1 )  

?/(r~ ~) = (m q- 4) 5/(2Vel E)- (2) 

Cv/~ = 6VelNhEz/[ (m + 4)5]. (3) 

Furthermore, we take into account [3]: 

E = AkVm'pN/Vel., (4) 

where A is a dimensionless coefficient, where for compounds with predominantly ionic type 
of chemical bonds A = 64, for metals A = 90. Then we have from (3) and (4): 
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